$f$ satisfies weak flow-conservation, respects the capacity and satisfies $F^-_e(\theta+\tau_e) = F^+_e(\bar\theta)+(\theta-\bar\theta)\nu_e$ for all $\theta \in \IRnn$ where $\bar\theta \coloneqq \max\set{\theta' \leq \theta \sMid \ql(\theta')=0}$
$f$ satisfies weak flow-conservation, respects the capacity and satisfies $F^-_e(\cexittime(\theta)) = F^+_e(\theta)$ for all $\theta \in \IRnn$
Lemma A.6: For $G: \IRnn \to \IR$ absolutely continuous with $G(0)=0$, the following are equivalent:
$G(\theta) \geq 0$ for all $\theta \in \IRnn$
$G(\theta) \lt 0 \implies \deriv{G}(\theta) \geq 0$ for almost all $\theta \in \IRnn$
$G(\theta) \leq 0 \implies \deriv{G}(\theta) = 0$ for almost all $\theta \in \IRnn$
Lemma A.5: For $f: \IR \to \IRnn$ locally integrable and $\set{[a_j,b_j)}_{j \in J}$, the following are equivalent:
For every $j \in J$: $f(\theta)=0$ for almost all $\theta \in [a_j,b_j)$
$f(\theta) = 0$ for almost all $\theta \in \bigcup_{j \in J}[a_j,b_j)$
Lemma 4.4: For any $f^+_e: \IR \to \IRnn$ loc.-int. with $\supp(f^+_e) \subseteq \IRnn$ there exists a $f^-_e$ such that $(f^+_e,f^-_e)$ is a Vickrey flow.
Lemma 4.5: $(f^+_e,f^-_e)$ and $(g^+_e,g^-_e)$ two Vickrey flows with $f^+_e(\theta) = g^+_e(\theta)$ f.a.a. $\theta \leq T$. Then, $f^-_e(\theta) = g^-_e(\theta)$ f.a.a. $\theta \leq \cexittime(T)$.